Аннотация:
В работе представлено исследование различных подходов к классификации почвенных покровов на основе нейросетевых алгоритмов по данным гиперспектрального дистанционного и проксимального зондирования Земли. Спектральные распределения при этом регистрировались в лабораторных условиях с использованием изображающего сканирующего гиперспектрометра на основе схемы Оффнера. Экспериментально исследованы пространственно-спектральные признаки девяти проб почв с различных участков фермерского хозяйства на территории Самарской области. С помощью метода энергодисперсионного микроанализа установлено соответствие гиперспектральных данных и химического состава взятых проб. На основе полученных данных реализована нейросетевая классификация образцов почв в зависимости от содержания в них таких элементов, как углерод и кальций. В качестве классификатора использовалась нормализованная спектрально-пространственная сверточная нейронная сеть. Авторами предложен подход к классификации гиперспектральных изображений высокого разрешения, основанный на уточнении мультиклассовой сверточной нейронной сети с помощью ансамбля бинарных классификаторов. Показано, что классификация образцов почв по содержанию углерода и кальция осуществляется с точностью 0,96.