Аннотация:
В работе рассматриваются некоторые аспекты применения метода главных компонент (МГК) и линейного дискриминантного анализа (ЛДА) для решения задачи распознавания изображений. Основная идея такого подхода заключается в том, что сначала изображения лиц проецируются из исходного пространства признаков в редуцированное подпространство главных компонент, а затем для разделения классов изображений используется линейный дискриминантный анализ. В статье исследуется эффективность применения МГК и ЛДА к задаче распознавания изображений лиц без их предварительной нормализации. Если число изображений в классе невелико, предлагается дополнять учебную выборку изображениями, полученными путём поворота, масштабирования и зеркалирования. На изображениях баз данных ORL и Feret изучается влияние расширения учебной выборки на качество распознавания ненормализованных изображений лиц. Также рассматривается задача повышения эффективности расчёта главных компонент для больших наборов изображений. Метод линейной конденсации представляет новую технологию расчёта главных компонент больших матриц. Для повышения эффективности метода линейной конденсации предлагается использовать алгоритм блочно-ортогональной конденсации. Оценивается точность и быстродействие разработанного алгоритма.
Ключевые слова:распознавание лиц, метод главных компонент, линейный дискриминантный анализ, метод линейной конденсации.