Аннотация:
Предложен метод получения решения параксиального уравнения Гельмгольца, описывающего двумерные световые пучки, ускоряющиеся на конечном отрезке траектории. Метод состоит в комплексном сопряжении и сдвиге вдоль продольной координаты (параллельной оптической оси) комплексной амплитуды известных замедляющихся световых пучков. Этим методом получены ускоряющиеся по траектории корневой параболы пучки Френеля и Лапласа, а также пучок «половины Бесселя». Замечено, что хорошо известные пучки Эрмита–Гаусса тоже являются ускоряющимися по гиперболической траектории световыми пучками. В отличие от известных бездифракционных ускоряющихся пучков Эйри рассмотренные здесь пучки при распространении сходятся в конце ускоряющегося отрезка траектории.