RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2018, том 42, выпуск 6, страницы 1101–1111 (Mi co597)

Эта публикация цитируется в 28 статьях

ЧИСЛЕННЫЕ МЕТОДЫ И АНАЛИЗ ДАННЫХ

Анализ больших данных в геоинформационной задаче краткосрочного прогнозирования параметров транспортного потока на базе метода k ближайших соседей

А. А. Агафоновa, А. С. Юмагановa, В. В. Мясниковab

a Самарский национальный исследовательский университет имени академика С.П. Королёва, 443086, Россия, г. Самара, Московское шоссе д. 34
b ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, 443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

Аннотация: Точная и своевременная информация о текущем и прогнозном распределении транспортных потоков является важным фактором функционирования интеллектуальных транспортных систем. Использование этих данных позволит транспортным агентствам эффективнее решать задачу управления трафиком, участникам дорожного движения точнее планировать маршрут поездки и снизить время движения, и в целом повысит эффективность использования транспортной инфраструктуры. В данной статье представлена модель краткосрочного прогнозирования трафика, основанная на методе $k$ ближайших соседей, которая учитывает пространственное и временное распределение транспортных потоков. Разработанная модель реализована с помощью фреймворка Apache Spark на основе модели распределённых вычислений MapReduce. Экспериментальные исследования представленной модели по данным о распределении транспортных потоков в транспортной сети города Самары позволяет сделать вывод, что предлагаемая модель обладает высокой точностью прогнозирования и временем работы, достаточным для прогнозирования в режиме реального времени.

Ключевые слова: транспортный поток, краткосрочное прогнозирование, k ближайших соседей, MapReduce.

Поступила в редакцию: 03.12.2018
Принята в печать: 10.12.2018

DOI: 10.18287/2412-6179-2018-42-6-1101-1111



© МИАН, 2024