Аннотация:
Рассмотрены три разных типа астигматических Гауссовых пучков, комплексная амплитуда которых в зоне дифракции Френеля описывается многочленом Эрмита с номером (n, 0) c комплексным аргументом. Первый тип – это оптический Гауссов вихрь с круговой симметрией и топологическим зарядом n, прошедший цилиндрическую линзу. При распространении оптический вихрь «распадается» на n оптических вихрей первого порядка. Его орбитальный угловой момент на один фотон равен n. Второй тип – это эллиптический оптический Гауссов вихрь с топологическим зарядом n, прошедший цилиндрическую линзу. При специальном выборе степени эллиптичности (1:3) такой пучок сохраняет свою структуру при распространении и вырожденный ноль интенсивности на оптической оси не «распадается» на n оптических вихрей. Орбитальный угловой момент такого пучка дробный и не равен n. Третий тип – это астигматический пучок Эрмита–Гаусса порядка (n, 0), который формируется после прохождения пучком Эрмита–Гаусса цилиндрической линзы. Цилиндрическая линза вносит орбитальный угловой момент в исходный пучок Эрмита–Гаусса. Орбитальный угловой момент такого пучка состоит из суммы вихревой и астигматической составляющих и может достигать больших значений (десятки и сотни тысяч на фотон). При определённых условиях нулевые линии интенсивности пучка Эрмита–Гаусса «собираются» в n-кратно вырожденный ноль интенсивности на оптической оси, и орбитальный угловой момент такого пучка равен n. По измерению двух распределений интенсивности астигматического пучка Эрмита–Гаусса в фокусах двух цилиндрических линз рассчитан нормированный орбитальный угловой момент: экспериментальное значение – 13,62, теоретическое значение – 14,76, СКО – 7%.