Аннотация:
В работе предложен метод выделения области диабетического макулярного отёка на изображениях глазного дна на основе анализа данных оптической когерентной томографии. Актуальность работы обусловлена необходимостью создания систем поддержки проведения операций лазерокоагуляции для повышения её эффективности. В основе предложенного подхода лежит набор методов и алгоритмов сегментации изображений, поиска особых точек и составления их дескрипторов. Алгоритм Кэнни применяется для поиска границы между стекловидным телом и сетчаткой на изображениях оптической когерентной томографии. Метод сегментации, основанный на алгоритме Краскала построения минимального остовного дерева взвешенного связного неориентированного графа, используется для выделения области сетчатки до пигментного слоя на изображении. С использованием полученных результатов сегментации была построена карта толщины сетчатки глаза и её отклонений от нормы. В ходе проведенных исследований были подобраны оптимальные значения параметров в алгоритмах Кэнни и графовой сегментации, позволяющие достичь ошибки сегментации в размере 5 %. Были рассмотрены методы SIFT, SURF и AKAZE для наложения рассчитанных карт толщины сетчатки глаза и её отклонений от нормы на изображение глазного дна. В случаях, когда вместе с данными оптической когерентной томографии предоставлен снимок с фундус-камеры аппарата оптической когерентной томографии, с помощью метода SURF возможно точное совмещение с изображением глазного дна.