Аннотация:
В работе представлены результаты применения нейросетевого классификатора для анализа снимков злокачественных и доброкачественных кожных образований, полученных с помощью гиперспектральной камеры. С помощью трёхблочной нейросети архитектуры VGG произведена классификация набора двумерных изображений меланомы, папилломы и базальноклеточной карциномы, полученных в диапазонах 530–570 и 600–606 нм, характеризуемых наибольшим поглощением меланина и гемоглобина. Проанализирована достаточность включения в обучающий набор двумерных изображений ограниченного спектрального диапазона. Полученные результаты позволяют судить о значительных перспективах применения нейросетевых алгоритмов обработки гиперспектральных данных для классификации кожных патологий. При относительно малом наборе обучаю-щих данных точность классификации для трех типов новообразований составила 96