Аннотация:
В настоящей работе предложен новый подход к классификации гиперспектральных изображений высокого разрешения в прикладной задаче определения типов сельскохозяйственной растительности. В качестве классификатора используется спектрально-пространственная сверточная нейронная сеть с компенсацией вариаций освещения. Для автоматизированного формирования обучающей выборки предложен алгоритм на основе адаптивного вегетационного индекса. Показана эффективность предложенного подхода в задаче классификации типов растительности по результатам съемок сельскохозяйственных угодий, выполненных сканирующей гиперспектральной камерой.