RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерные исследования и моделирование // Архив

Компьютерные исследования и моделирование, 2019, том 11, выпуск 3, страницы 367–377 (Mi crm717)

Эта публикация цитируется в 4 статьях

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

Приближение аналитических функций повторными суммами Валле Пуссена

О. Г. Ровенская

Донбасская государственная машиностроительная академия, Украина, 84313, г. Краматорск, ул. Академическая, д. 72

Аннотация: Работа посвящена вопросам приближения периодических функций высокой гладкости средними арифметическими суммами Фурье. Наиболее естественным и простым примером линейного процесса аппроксимации непрерывных периодических функций действительной переменной является приближение элементами последовательностей частичных сумм ряда Фурье. Известно, что последовательности частичных сумм ряда Фурье не являются равномерно сходящимися на всем пространстве $C$ $2\pi$-периодических непрерывных функций. Значительное число работ данного направления посвящено изучению аппроксимативных свойств методов приближения, которые для заданной функции $f$ образуются с помощью преобразований частичных сумм ее ряда Фурье и позволяют построить последовательности тригонометрических полиномов, которые равномерно сходятся для каждой функции $f\in C$ . На протяжении последних десятилетий широко изучаются суммы Валле Пуссена и их частные случаи суммы Фейера. Одним из наиболее важных направлений в этой области является изучение асимптотического поведения верхних граней уклонений средних арифметических сумм Фурье по различным классам периодических функций. Методы исследования интегральных представлений уклонений тригонометрических полиномов, которые порождаются линейными методами суммирования рядов Фурье, возникли и получили свое развитие в работах С. М. Никольского, С. Б. Стечкина, Н. П. Корнейчука, В. К. Дзядыка и их учеников.
Целью работы является систематизация известных результатов, касающихся приближения классов периодических функций высокой гладкости средними арифметическими суммами Фурье, и представление новых фактов, полученных для их частных случаев. Изучены аппроксимативные свойства тригонометрических полиномов, порождаемых повторным применением метода суммирования Валле Пуссена, на классах периодических функций, которые можно регулярно продолжить в фиксированную полосу комплексной плоскости. Получены асимптотические формулы для верхних граней уклонений в равномерной метрике $r$-повторных сумм Валле Пуссена на классах аналитических периодических функций. Указаны условия, при которых повторные суммы Валле Пуссена обеспечивают лучший порядок приближения, чем обычные.

Ключевые слова: ряд Фурье, интеграл Пуассона, асимптотическая формула.

УДК: 517.5

Поступила в редакцию: 10.02.2019
Исправленный вариант: 10.03.2019
Принята в печать: 28.03.2019

DOI: 10.20537/2076-7633-2019-11-3-367-377



© МИАН, 2024