Аннотация:
Известная нижняя оценка максимального числа простых импликант булевой функции (длины сокращённой ДНФ) отличается от верхней оценки в $\Theta(\sqrt{n})$ раз и асимптотически достигается на симметричной поясковой функции, имеющей ширину пояса $n/3$. Для изучения свойств связных булевых функций с большим числом простых импликант вводится понятие локально экстремальной в некоторой окрестности функции по числу простых импликант. Получены оценки изменения числа простых импликант при изменении значений поясковой функции в некоторой $d$-окрестности. Доказано, что поясковая функция, для которой ширина пояса и номер нижнего слоя единичных вершин асимптотически равны $n/3$, локально экстремальна в некоторой окрестности для $d \le \Theta(n)$, а для $d \ge {{2}^{\Theta(n)}}$ — нет. Аналогичное утверждение справедливо для функций, имеющих простые импликанты разного ранга. Свойство локальной экстремальности сохраняется после применения к булевой функции преобразования, сохраняющего расстояние между вершинами единичного куба. Библиогр. 10.