Аннотация:
Предлагается релаксационный субградиентный метод, включающий оптимизацию параметров с использованием коррекции матриц метрики второго ранга, со структурой, аналогичной квазиньютоновским методам. Преобразование матрицы метрики заключается в подавлении ортогональных и усилении коллинеарных компонентов вектора субградиента минимальной длины. Задача построения матрицы метрики формулируется как задача решения системы неравенств. Решение такой системы основано на новом алгоритме обучения. Получена оценка скорости его сходимости в зависимости от параметров множества субградиентов. На этой основе разработан и исследован новый релаксационный субградиентный метод. Вычислительные эксперименты над сложными функциями большой размерности подтверждают эффективность предложенного алгоритма. Табл. 4, библиогр. 32.