Аннотация:
В работе построен алгоритм расчёта сценариев динамики выявленных случаев COVID-19 в Республике Казахстан, в основе которого лежат обработка неполных эпидемиологических данных и решение обратной задачи восстановления параметров агентной модели по совокупности доступных эпидемиологических данных. Основным инструментом построения модели является открытая библиотека Covasim. В случае резкого изменения ситуации (появление нового штамма, отмена или введение ограничительных мер и т. п.) параметры модели обновляются с учётом дополнительной информации за предыдущий месяц (оперативное усвоение данных). Обратная задача решалась методом стохастической глобальной оптимизации (древовидных оценок Парзена). В качестве примера приведены два сценария распространения COVID-19, рассчитанных 12 декабря 2021 г. на период до 20 января 2022 г. Сценарий, в котором учитывались новогодние праздники (опубликован 12 декабря 2021 г. на сайте covid19-modeling.ru), практически совпал с тем, что произошло в реальности (погрешность составила 0,2%). Табл. 3, ил. 6, библиогр. 33.