Аннотация:
Рассматриваются методы моментов в подпространствах Крылова для решения симметричных систем линейных алгебраических уравнений. Предложено семейство итерационных алгоритмов, основанное на обобщенной ортогонализации Ланцоша с выбором исходного вектора $v^0$ независимо от начальной невязки. Данный подход позволяет на одном наборе базисных векторов экономично решать серии систем линейных алгебраических уравнений с одинаковой матрицей, но разными правыми частями, а также реализовывать обобщенные методы моментов, сводящиеся к блочным крыловским алгоритмам с использованием совокупности линейно независимых исходных векторов $v^0,\dots,v_m^0$. Повышение производительности реализаций алгоритмов достигается за счет сокращения числа матричных умножений и эффективного распараллеливания векторных операций. Показана возможность расширения применимости методов моментов с использованием предобусловливания на различные классы алгебраических систем: знакопеременных, несовместных, несимметричных и комплексных, в том числе неэрмитовых.