Аннотация:
В работе исследуется поведение функции распределения биномиальной случайной величины с параметрами $n$ и $b/(n+c)$ в точке $b-1$ при натуральных $b\le n$ и $c\in[0,1]$. Полученные результаты имеют непосредственное следствие в широко известной задаче о малых отклонениях сумм независимых случайных величин от их математического ожидания. Кроме того, мы ответили на вопрос о монотонности функции Рамануджана для биномиального распределения, который сформулировали в своей работе Джогдео и Самуэльс в 1968 г.