Аннотация:
Классическая теорема Якоби–Шаля утверждает, что касательные линии, проведенные к геодезической на $n$-осном эллипсоиде в евклидовом $n$-мерном пространстве, касаются помимо этого эллипсоида еще $(n-2)$-х софокусных с ним квадрик, общих для всех точек данной геодезической. Из этой теоремы немедленно следует интегрируемость геодезического потока на эллипсоиде. В данной работе доказывается обобщение этого результата для геодезического потока на пересечении нескольких софокусных квадрик. Кроме того, если добавить к такой системе потенциал Гука с центром в начале координат, интегрируемость задачи сохранится.