Аннотация:
Рассматривается задача поиска глобального экстремума неотрицательной функции на положительном параллелепипеде в $n$-мерном евклидовом пространстве. Предложен метод локализации фиктивных экстремумов в ограниченной области вблизи начала координат, что позволяет отделить точку глобального экстремума от фиктивных экстремумов путем отбрасывания его на существенное расстояние от множества локализации фиктивных минимумов. При этом за счет выбора начальной точки в методе градиентного спуска удается обосновать сходимость итерационной последовательности к глобальному экстремуму минимизируемой функции.