Аннотация:
Рассматривается система полулинейных эллиптических уравнений второго порядка в многомерной области, граница которой произвольным образом искривляется и содержится в узком слое вдоль невозмущенной границы. На искривленной границе задается условие Дирихле или условие Неймана. В случае условия Неймана на структуру искривления дополнительно накладываются достаточно естественные и весьма слабые условия. Показано, что в таких предположениях усредненной будет краевая задача для той же системы в невозмущенной области с краевым условием того же типа, что на возмущенной границе. Основной результат – соответствующие операторные $W_2^1$- и $L_2$-оценки.