Аннотация:
Для уравнения
\begin{equation}
\operatorname{sgn}y\cdot|y|^mu_{xx}+\operatorname{sgn}x\cdot|x|^mu_{yy}=0,\quad m>0,\label{1}
\end{equation}
в области $D$, ограниченной: кривой $\Gamma$ из класса Ляпунова, лежащей в первой четверти плоскости с концами в точках $B(1,0)$ и $B_1(0,1)$; характеристиками $AC$ и $CB$ уравнения \eqref{1} при $x>0$, $y<0$; характеристиками $AC_1$ и $C_1B_1$ уравнения \eqref{1} при $x<0$, $y>0$, где $A=(0,0)$, $C=(c,-c)$, $C_1=(-c,c)$, $c=((m+2)/4)^{2/(m+2)}$, рассмотрена задача Трикоми с данными на кривой $\Gamma$ и характеристиках $AC$ и $AC_1$. Доказано существование регулярного решения задачи Трикоми в случае, когда “нормальная” кривая $x^{m+2}+y^{m+2}=1$ уравнения \eqref{1} содержится в эллиптической части области.
Библиогр. 24 назв.