Аннотация:
Для аффинной системы со скалярным управлением
$$\dot x=A(x)+B(x)u,\quad x\in\mathrm R^n,\quad u\in\mathrm R^1,\quad A(0)=0,\quad B(0)\ne0
$$
рассматривается задача глобальной стабилизации нулевого положения равновесия. Решение приводится в виде статических и динамических обратных связей с построением функции Ляпунова для замкнутой системы. Результаты получены при помощи нахождения “виртуальных” выходов, при которых система является минимально фазовой. Используются выходы с относительной степенью $1$, $2$, а также произвольной относительной степенью. Обобщены необходимые и достаточные условия существования таких выходов на случай произвольной относительной степени при некотором специальном виде аффинной системы.
Библиогр. 3 назв.