RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Journal of Mathematical and Computer Applications // Архив

Eurasian Journal of Mathematical and Computer Applications, 2019, том 7, выпуск 1, страницы 38–52 (Mi ejmca130)

On a homogeneous parabolic problem in an infinite angular domain

M. T. Jenaliyeva, M. I. Ramazanovb, S. A. Iskakovb

a Institute of Mathematics and Mathematical Modeling, Pushkin 125, Almaty, Kazakhstan
b Buketov Karaganda State University, Universitetskaya 28, Karaganda, Kazakhstan

Аннотация: In this paper we study a homogeneous boundary value problem for the heat equation in a noncylindrical domain with the special boundary conditions. The problem under consideration is useful for solving the single-phase Stefan problem. It has been shown that this homogeneous problem has a nontrivial solution up to constant factor in the weight class of essentially bounded functions. A class of functions in which this problem has only a trivial solution is found. Thus, a class of functions in which the corresponding inhomogeneous problem is uniquely solvable is defined.

Ключевые слова: Stefan’s problem, heat equation, noncylindrical domain.

MSC: 35K05, 45D05

Язык публикации: английский

DOI: 10.32523/2306-6172-2019-7-1-38-52



Реферативные базы данных:


© МИАН, 2024