RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Journal of Mathematical and Computer Applications // Архив

Eurasian Journal of Mathematical and Computer Applications, 2020, том 8, выпуск 1, страницы 4–29 (Mi ejmca148)

Null controllability of degenerate/singular parabolic equations with degeneracy and singularity occurring in the interior of the spatial domain

Kh. Atifi, E.-H. Essoufi, B. Khouiti

Faculté des Sciences et Techniques, Université Hassan 1er, Laboratoire MISI, B.P. 577, Settat 26000, Morocco

Аннотация: The main purpose of this work is to study numerically a null controllability for a class of one-dimensional degenerate/singular parabolic equations, in divergence and nondivergence form. For this, we resolve an inverse source problem reformulated in a least-squares framework, which leads to a non-convex minimization problem of a cost function $J$, that is solved using a Tikhonov regularization. Firstly, we prove the well-posedness of the minimization problem and the direct problem. Secondly we prove the differentiability of the functional $J$, which gives the existence of the gradient of $J$, that is computed using the adjoint state method. Finally, to show the convergence of the descent method, we prove the Lipschitz continuity of the gradient of $J$. Also we present some numerical experiments.

Ключевые слова: Null controllability, singular equations, inverse source problem, adjoint-state method.

MSC: 35K65, 35R30, 35B99

Язык публикации: английский

DOI: 10.32523/2306-6172-2020-8-1-4-29



Реферативные базы данных:


© МИАН, 2024