RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2012, том 3, номер 4, страницы 44–52 (Mi emj104)

Эта публикация цитируется в 5 статьях

Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$

D. J. Kečkić

Faculty of Mathematics, University of Belgrade, Beograd

Аннотация: For the usual norm on spaces $C(K)$ and $C_b(\Omega)$ of all continuous functions on a compact Hausdorff space $K$ (all bounded continuous functions on a locally compact Hausdorff space $\Omega$), the following equalities are proved:
$$ \lim_{t\to0+}\frac{\|f+tg\|_{C(K)}-\|f\|_{C(K)}}t=\max_{x\in\{z\mid\,|f(z)|=\|f\|\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)) $$
and
$$ \lim_{t\to0+}\frac{\|f+tg\|_{C_b(\Omega)}-\|f\|_{C_b(\Omega)}}t=\inf_{\delta>0}\sup_{x\in\{z\mid\,|f(z)|\ge\|f\|-\delta\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)). $$
These equalities are used to characterize the orthogonality in the sense of James (Birkhoff) in spaces $C(K)$ and $C_b(\Omega)$ as well as to give necessary and sufficient conditions for a point on the unit sphere to be a smooth point.

Ключевые слова и фразы: orthogonality in the sense of James, Gateaux derivative, smooth points.

MSC: 46G05, 46E15, 49J50

Поступила в редакцию: 22.11.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024