RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 3, страницы 8–19 (Mi emj129)

Эта публикация цитируется в 1 статье

The O'Neil inequality for the Hankel convolution operator and some applications

C. Aykola, V. S. Guliyevbc, A. Serbetcia

a Ankara University, Department of Mathematics, 06100 Tandogan, Ankara, Turkey
b Ahi Evran University, Department of Mathematics, 40100, Kirsehir, Turkey
c Institute of Mathematics and Mechanics Academy of Sciences of Azerbaijan, 9, B. Vaxabzade, Baku, Republic of Azerbaijan, AZ1141

Аннотация: In this paper we prove the O'Neil inequality for the Hankel (Fourier–Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz–Hankel potential operator $I_{\beta,\alpha}$, associated with the Hankel transform in the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$. We establish necessary and sufficient conditions for the boundedness of $I_{\beta,\alpha}$, from the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$ to $L_{q,s,\alpha}(0,\infty)$, $1<p<q<\infty$, $\le r\le s\le\infty$. We obtain boundedness conditions in the limiting cases $p=1$ and $p=(2\alpha+2)/\beta$. Finally, for the limiting case $p=(2\alpha+2)/\beta$ we prove an analogue of the Adams theorem on exponential integrability of $I_{\beta,\alpha}$, in $L_{(2\alpha+2)/\beta,r,\alpha}(0,\infty)$.

Ключевые слова и фразы: Bessel differential operator, Hankel transform, $\alpha$ -rearrangement, Lorentz–Hankel spaces, Riesz–Hankel potential.

MSC: 46E30, 42B35, 47G10

Поступила в редакцию: 19.03.2013

Язык публикации: английский



© МИАН, 2024