RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 3, страницы 32–52 (Mi emj131)

Эта публикация цитируется в 3 статьях

Addition of lower order terms preserving almost hypoellipticity of polynomials

H. G. Ghazaryan

Department of mathematics and mathematical modeling, Russian-Armenian (Slavonic) State University, 123 Ovsep Emin St., 0051 Yerevan, Armenia

Аннотация: A linear differential operator $P(D)$ with constant coefficients is called almost hypoelliptic if all derivatives $P^{(\nu)}(\xi)$ of the characteristic polynomial $P(\xi)$ can be estimated above via $P(\xi)$. In this paper we describe the collection of lower order terms addition of which to an almost hypoelliptic operator $P(D)$ (polynomial $P(\xi)$) preserves its almost hypoellipticity and its strength.

Ключевые слова и фразы: almost hypoelliptic operator (polynomial), lower order term, strength (power) of differential operator (polynomial).

MSC: 12E10

Поступила в редакцию: 20.11.2012

Язык публикации: английский



© МИАН, 2024