RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 3, страницы 70–83 (Mi emj134)

Эта публикация цитируется в 10 статьях

A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations

P. D. Lamberti, L. Provenzano

Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste, 63, 35126 Padova, Italy

Аннотация: We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean $N$-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.

Ключевые слова и фразы: high order elliptic operators, eigenvalues, mass density.

MSC: 35J40, 35B20, 35P15

Поступила в редакцию: 25.07.2013

Язык публикации: английский



© МИАН, 2024