RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 4, страницы 5–16 (Mi emj141)

Эта публикация цитируется в 10 статьях

On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0<p(x)<1$

R. A. Bandaliev

Department of mathematical analysis, Institute of mathematics and mechanics, National academy of sciences of Azerbaijan, 9 B. Vahabzade St., Az 1141 Baku

Аннотация: In this paper two-weighted inequalities for the Hardy operator and its dual operator acting from one weighted variable Lebesgue space to another weighted variable Lebesgue space are proved. In particular, sufficient conditions on the weights ensuring the validity of two-weighted inequalities of Hardy type are found. Also an embedding theorem for weighted variable Lebesgue spaces is proved.

Ключевые слова и фразы: the Hardy inequality, $L_{p(x),\omega}$-spaces with $0<p(x)<1$, weights, embeddings.

MSC: 47B38

Поступила в редакцию: 14.04.2012

Язык публикации: английский



© МИАН, 2024