RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2014, том 5, номер 1, страницы 82–94 (Mi emj150)

Эта публикация цитируется в 1 статье

On a certain class of operator algebras and their derivations

Sh. A. Ayupovab, R. Z. Abdullaeva, K. K. Kudaybergenovc

a Dormon yoli 29, Institute of Mathematics, National University of Uzbekistan, 100125 Tashkent, Uzbekistan
b Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
c Department of Mathematics, Karakalpak State University, 1 Abdirov St., 142012, Nukus, Uzbekistan

Аннотация: Given a von Neumann algebra $M$ with a faithful normal finite trace, we introduce the so-called finite tracial algebra $M_f$ as the intersection of $L_p$-spaces $L_p(M,\mu)$ over all $p\geqslant1$ and over all faithful normal finite traces $\mu$ on $M$. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner.

Ключевые слова и фразы: von Neumann algebra, faithful normal finite trace, non commutative $L_p$-spaces, Arens algebra, finite tracial algebra, derivations.

MSC: 46L51, 46L52, 46L57, 46L07

Поступила в редакцию: 06.04.2011

Язык публикации: английский



© МИАН, 2024