RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2015, том 6, номер 2, страницы 18–40 (Mi emj192)

Эта публикация цитируется в 7 статьях

Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations

A. K. Kerimbekova, E. F. Abdyldaevab

a Department of Applied Mathematics and Informatics, Faculty of Natural and Technical Sciences, Kyrgyz-Russian Slavic University, Bishkek, Kyrgyzstan
b Department of Mathematics, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan

Аннотация: In this paper we investigate the problem of distributed optimal control for the oscillation processes described by Fredholm integro-differential equations with partial derivatives when the function of the external source depends nonlinearly on the control parameters. We have developed an algorithm for finding approximate solutions of nonlinear optimization problems with arbitrary precision. The developed method of solving nonlinear optimization problems is constructive and can be used in applications.

Ключевые слова и фразы: boundary value problem, generalized solution, approximate solutions, convergence, functional, the maximum principle, the optimality condition, nonlinear integral equations.

MSC: Primary 49J20; Secondary 35K20

Поступила в редакцию: 18.10.2014

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024