RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2016, том 7, номер 3, страницы 17–32 (Mi emj230)

Эта публикация цитируется в 3 статьях

Normal extensions of linear operators

B. N. Biyarov

Department of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 2 Satpayev St., 010008 Astana, Kazakhstan

Аннотация: Let $L_0$ be a densely defined minimal linear operator in a Hilbert space $H$. We prove that if there exists at least one correct extension $L_S$ of $L_0$ with the property $D(L_S ) = D(L^*_S )$, then we can describe all correct extensions $L$ with the property $D(L) = D(L^*)$. We also prove that if $L_0$ is formally normal and there exists at least one correct normal extension $L_N$, then we can describe all correct normal extensions $L$ of $L_0$. As an example, the Cauchy–Riemann operator is considered.

Ключевые слова и фразы: formally normal operator, normal operator, correct restriction, correct extension.

MSC: 47Axx, 47A05; 47B15

Поступила в редакцию: 20.03.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024