Эта публикация цитируется в	
			4 статьях
				
			
				On fundamental solutions of a class of weak hyperbolic operators
			
			V. N. Margaryanab, 	
H. G. Ghazaryanab		a Institute of Mathematics the National Academy of Sciences of Armenia,
0051 Yerevan, Armenia
					b Department of Mathematics and Mathematical Modeling,
Russian-Armenian University,
123 Ovsep Emin St,
0051 Yerevan, Armenia
					
			Аннотация:
			We consider a certain class of polyhedrons 
$\mathfrak{R}\subset\mathbb{E}^n$, multi-anisotropic Jevre spaces 
$G^{\mathfrak{R}}(\mathbb{E}^n)$, their subspaces 
$G_0^{\mathfrak{R}}(\mathbb{E}^n)$, consisting of all functions 
$f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with compact support, and their duals 
$(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$. We introduce the notion of a linear differential operator 
$P(D)$, 
$h_{\mathfrak{R}}$-hyperbolic with respect to a vector 
$N\in\mathbb{E}^n$, where 
$h_{\mathfrak{R}}$ is a weight function generated by the polyhedron 
$\mathfrak{R}$. The existence is shown of a fundamental solution 
$E$ of the operator 
$P(D)$ belonging to 
$(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$ with 
$\mathrm{supp}\, E\subset\overline{\Omega_N}$, where 
$\Omega_N:=\{x\in\mathbb{E}^n, (x, N)>0\}$. It is also shown that for any right-hand side 
$f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with the support in a cone contained in 
$\overline{\Omega_N}$ and with the vertex at the origin of 
$\mathbb{E}^n$, the equation 
$P(D)u = f$ has a solution belonging to 
$G^{\mathfrak{R}}(\mathbb{E}^n)$.
				
			
Ключевые слова и фразы:
			hyperbolic with weight operator (polynomial), multianisotropic Jevre space, Newton polyhedron, fundamental solution.	
			
MSC: 12E10	Поступила в редакцию: 13.03.2017	
			
Язык публикации: английский