RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2010, том 1, номер 4, страницы 116–123 (Mi emj38)

Justification of the dynamical systems method for global homeomorphism

A. G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS, USA

Аннотация: The dynamical systems method (DSM) is justified for solving operator equations $F(u)=f$, where $F$ is a nonlinear operator in a Hilbert space $H$. It is assumed that $F$ is a global homeomorphism of $H$ onto $H$, that $F\in C^1_{loc}$, that is, it has the Fréchet derivative $F'(u)$ continuous with respect to $u$, that the operator $[F'(u)]^{-1}$ exists for all $u\in H$ and is bounded, $||[F'(u)]^{-1}||\leq m(u)$, where $m(u)>0$ depends on $u$, and is not necessarily uniformly bounded with respect to $u$. It is proved under these assumptions that the continuous analogue of the Newton's method
\begin{equation} \dot u=-[F'(u)]^{-1}(F(u)-f),\qquad u(0)=u_0, \tag{1} \end{equation}
converges strongly to the solution of the equation $F(u)=f$ for any $f\in H$ and any $u_0\in H$. The global (and even local) existence of the solution to the Cauchy problem $(1)$ was not established earlier without assuming that $F'(u)$ is Lipschitz-continuous. The case when $F$ is not a global homeomorphism but a monotone operator in $H$ is also considered.

Ключевые слова и фразы: the dynamical systems method (DSM), surjectivity, global homeomorphisms, monotone operators.

MSC: 47J35

Поступила в редакцию: 19.07.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024