RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2011, том 2, номер 1, страницы 52–80 (Mi emj42)

Эта публикация цитируется в 25 статьях

On boundedness of the Hardy operator in Morrey-type spaces

V. I. Burenkova, P. Jainb, T. V. Tararykovaa

a Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan
b Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi, India

Аннотация: In this paper we study the boundedness of the Hardy operator $H_\alpha$ in local and global Morrey-type spaces $LM_{p\theta,w(\cdot)}$, $GM_{p\theta,w(\cdot)}$ respectively, characterized by numerical parameters $p,\theta$ and a functional parameter $w$. We reduce this problem to the problem of a continuous embedding of one local Morrey-type space to another one. This allows obtaining, for all admissible values of the numerical parameters $\alpha,p_1,p_2,\theta_1,\theta_2$, sufficient conditions on the functional parameters $w_1$ and $w_2$ ensuring the boundedness of $H_\alpha$ from $LM_{p_1\theta_1,w_1(\cdot)}$ to $LM_{p_2\theta_2,w_2(\cdot)}$ and from $GM_{p_1\theta_1,w_1(\cdot)}$ to $GM_{p_2\theta_2,w_2(\cdot)}$. Moreover, for a certain range of the numerical parameters and under certain a priori assumptions on $w_1$ and $w_2$ these sufficient conditions coincide with the necessary ones.

Ключевые слова и фразы: Hardy operator, fractional maximal operator, Riesz potential, local and global Morrey-type spaces.

MSC: 47B38, 46E30

Поступила в редакцию: 14.01.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024