RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2021, том 12, номер 4, страницы 74–81 (Mi emj423)

Эта публикация цитируется в 1 статье

Ideal Connes-amenability of Lau product of Banach algebras

A. Minapoora, A. Bodaghib, O. T. Mewomoc

a Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran
b Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
c School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

Аннотация: Let $\mathcal{A}$ and $\mathcal{B}$ be Banach algebras and $\theta$ be a non-zero character on $\mathcal{B}$. In the current paper, we study the ideal Connes-amenability of the algebra $\mathcal{A}\times_\theta\mathcal{B}$ so-called the $\tau$-Lau product algebra. We also prove that if $\mathcal{A}\times_\theta\mathcal{B}$ is ideally Connes-amenable, then both $\mathcal{A}$ and $\mathcal{B}$ are ideally Connes-amenable. As a result, we show that $l^1(S)\times_\theta l^1(S)$ is ideally Connes-amenable, where $S$ is a Rees matrix semigroup.

Ключевые слова и фразы: amenability, derivation, ideal amenability, ideal Connes-amenability, Lau product algebra.

MSC: Primary 46H25, 46H20; Secondary 46H35

Поступила в редакцию: 24.07.2020

Язык публикации: английский

DOI: 10.32523/2077-9879-2021-12-4-74-81



Реферативные базы данных:


© МИАН, 2024