RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2022, том 13, номер 1, страницы 32–43 (Mi emj430)

Zeros of lacunary type polynomials

S. Das

Department of Mathematics, Kurseong College, Dow Hill Road, Kurseong, 734203 West Bengal, India

Аннотация: Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial
$$ f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n $$
with real or complex coefficients lie in the closed disc
$$ |z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M', $$
where
$$ M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|. $$
In this paper, we present new results on the location of zeros of the lacunary type polynomial
$$ p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p<n. $$
In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our results give better bounds for the location of polynomial zeros than the known ones.

Ключевые слова и фразы: zeros, lacunary polynomials, annular region.

УДК: 30C15, 30C10, 26C10

Поступила в редакцию: 04.08.2020
Исправленный вариант: 07.06.2021

Язык публикации: английский

DOI: 10.32523/2077-9879-2022-13-1-32-43



Реферативные базы данных:


© МИАН, 2024