RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2024, том 15, номер 1, страницы 8–22 (Mi emj488)

Эта публикация цитируется в 2 статьях

Time optimal control problem with integral constraint for the heat transfer process

Sh. A. Alimova, G. I. Ibragimovbc

a Department of Mathematics, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
b Institute of Mathematics, Uzbekistan Academy of Science, Student town, 100174 Tashkent, Uzbekistan
c Tashkent State University of Economics, 49 Islom Karimov St, 100066, Tashkent, Uzbekistan

Аннотация: In the present paper a mathematical model of thermocontrol processes is studied. Several convectors are installed on the disjoint subsets $\Gamma_k$ of the wall $\partial\Omega$ of a volume $\Omega$ and each convector produces a hot or cold flow with magnitude equal to $\mu_k(t)$, which are control functions, and on the surface $\partial\Omega\setminus\Gamma$, $\Gamma=\bigcup\Gamma_k$, a heat exchange occurs by the Newton law. The control functions $\mu_k(t)$ are subjected to an integral constraint. The problem is to find control functions to transfer the state of the process to a given state. A necessary and sufficient condition is found for solvability of this problem. An equation for the optimal transfer time is found, and an optimal control function is constructed explicitly.

Ключевые слова и фразы: heat transfer process, control function, integral constraint, optimal control, optimal time.

MSC: 93C20; 93C05

Поступила в редакцию: 24.11.2022

Язык публикации: английский

DOI: 10.32523/2077-9879-2024-15-1-08-22



© МИАН, 2025