RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2024, том 15, номер 2, страницы 42–47 (Mi emj500)

Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition

A. Kalybayab, S. Shalginbayevac

a Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Republic of Kazakhstan
b KIMEP University, 4 Abay Ave, 480100 Almaty, Republic of Kazakhstan
c Asfendiyarov Kazakh National Medical University, 37A Zheltoksan St, 050004 Almaty, Republic of Kazakhstan

Аннотация: This paper studies the weighted inequality of Hardy-type in discrete form for matrix operators satisfying the Oinarov condition. Necessary and sufficient conditions on the weight sequences under which the Hardy-type inequality holds were found in [13] for the case $1 < p \leq q < \infty$, in [14] for the case $1 < q < p <\infty$, and in [15] for the case $0 < p \leq q < \infty$, $0 < p \leq 1$. In this paper, we extend the result of [13] with a two-sided estimate of the inequality constant.

Ключевые слова и фразы: Hardy-type inequality, weight sequence, space of sequences, matrix operator, Oinarov condition.

MSC: 26D15

Поступила в редакцию: 02.03.2024

Язык публикации: английский

DOI: 10.32523/2077-9879-2024-15-2-42-47



© МИАН, 2024