RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2024, том 15, номер 2, страницы 48–60 (Mi emj501)

Эта публикация цитируется в 2 статьях

Dynamics of relay systems with hysteresis and harmonic perturbation

A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva

Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034, Russia

Аннотация: We consider a system of ordinary differential equations with a relay hysteresis and a harmonic perturbation. We propose an approach that allows one to decompose an $n$-dimensional system into one- and two-dimensional subsystems. The approach is illustrated by a numerical example for the system of dimension $3$. As a result of the decomposition, a two-dimensional subsystem with non-trivial Jordan block in right-hand side is studied. For this subsystem we prove a theorem on the existence and uniqueness of an asymptotically stable solution with a period being multiple to period of the perturbation. Moreover, we show how to obtain this solution by tuning the parameters defining the relay. We also provide a supporting example in this regard.

Ключевые слова и фразы: multidimensional system of ordinary differential equations, relay hysteresis, harmonic perturbation, decomposition, parametric matrix, subsystems, Jordan block, asymptotically stable periodic solution.

MSC: 34C25, 34C55, 93C15

Поступила в редакцию: 23.07.2023
Принята в печать: 25.01.2024

Язык публикации: английский

DOI: 10.32523/2077-9879-2024-15-2-48-60



© МИАН, 2025