RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2012, том 3, номер 1, страницы 86–96 (Mi emj76)

Dynamical systems method (DSM) for solving nonlinear operator equations in Banach spaces

A. G. Ramm

Kansas State University, Department of Mathematics, Manhattan, KS 66506-2602, USA

Аннотация: Let $F(u)=h$ be a solvable operator equation in a Banach space $X$ with a Gateaux differentiable norm. Under minimal smoothness assumptions on $F$, sufficient conditions are given for the validity of the Dynamical Systems Method (DSM) for solving the above operator equation. It is proved that the DSM (Dynamical Systems Method)
$$ \dot u(t)=-A_{a(t)}^{-1}(u(t))[F(u(t))+a(t)u(t)-f)],\quad u(0)=u_0, $$
converges to $y$ as $t\to+\infty$, for $a(t)$ properly chosen. Here $F(y)=f$, and $\dot u$ denotes the time derivative.

Ключевые слова и фразы: nonlinear operator equations, DSM (Dynamical Systems Method), Banach spaces.

MSC: 47J05, 47J06, 47J35

Поступила в редакцию: 21.11.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024