Аннотация:
Изучаются голономные системы линейных дифференциальных уравнений, связанные с линейными представлениями комплексных торов. Вычисляется характеристическое многообразие и характеристический цикл системы и, в частности, число линейно независимых решений в окрестности общей точки, в
терминах объемов соответствующих многогранников Ньютона. Базис в пространстве решений выписывается явно в виде рядов гипергеометрического типа. Приведен ряд примеров, показывающих, что многие классические гипергеометрические функции одного и нескольких переменных укладываются в предлагаемую схему.