RUS  ENG
Полная версия
ЖУРНАЛЫ // Функциональный анализ и его приложения // Архив

Функц. анализ и его прил., 2022, том 56, выпуск 1, страницы 81–93 (Mi faa3922)

Эта публикация цитируется в 1 статье

Многочлены от оператора дифференцирования и формулы для сумм некоторых сходящихся рядов

К. А. Мирзоевab, Т. А. Сафоноваcb

a Московский государственный университет имени М. В. Ломоносова, механико-математический факультет, Москва, Россия
b Московский центр фундаментальной и прикладной математики, Москва, Россия
c Северный (Арктический) федеральный университет имени М. В. Ломоносова, Архангельск, Россия

Аннотация: Пусть $P_n(x)$ — произвольный многочлен степени $n\geq 2$ с вещественными коэффициентами, такой, что $P_n(k)\ne 0$ при $k\in\mathbb{Z}$. В данной работе получены, в частности, формулы для суммы ряда вида $\sum_{k=-\infty}^{+\infty}1/P_n(k)$ как значения в точке $(0,0)$ функции Грина самосопряженной задачи, порожденной дифференциальным выражением $l_n[y]=P_n(i\,d/dx) y$ и граничными условиями $y^{(j)}(0)=y^{(j)}(2\pi)$ ($j=0,1,\dots,n-1$). Таким образом, эта сумма непосредственно выражаются через значения легко конструируемой элементарной функции. Эти формулы, очевидно, относятся и к сумме вида $\sum_{k=0}^{+\infty}1/P_n(k^2)$, а невозможность существования подобных общих формул для суммы $\sum_{k=0}^{+\infty}1/P_n(k)$ хорошо известна.

Ключевые слова: функция Грина, суммы рядов, значения дзета-функция Римана в четных точках, значения бета-функции Дирихле в нечетных точках.

УДК: 517.927.25+517.521.15

Поступило в редакцию: 17.06.2021
Исправленный вариант: 22.11.2021
Принята в печать: 29.11.2021

DOI: 10.4213/faa3922


 Англоязычная версия: Functional Analysis and Its Applications, 2022, 56:1, 61–71

Реферативные базы данных:


© МИАН, 2024