Аннотация:
Пусть $P_n(x)$ — произвольный многочлен степени $n\geq 2$ с вещественными коэффициентами, такой, что $P_n(k)\ne 0$ при $k\in\mathbb{Z}$. В данной работе получены, в частности, формулы для суммы ряда вида $\sum_{k=-\infty}^{+\infty}1/P_n(k)$ как значения в точке $(0,0)$ функции Грина самосопряженной задачи, порожденной дифференциальным выражением $l_n[y]=P_n(i\,d/dx) y$ и граничными условиями $y^{(j)}(0)=y^{(j)}(2\pi)$ ($j=0,1,\dots,n-1$). Таким образом, эта сумма непосредственно выражаются через значения легко конструируемой элементарной функции. Эти формулы, очевидно, относятся и к сумме вида $\sum_{k=0}^{+\infty}1/P_n(k^2)$, а невозможность существования подобных общих формул для суммы $\sum_{k=0}^{+\infty}1/P_n(k)$ хорошо известна.
Ключевые слова:функция Грина, суммы рядов, значения дзета-функция Римана в четных точках, значения бета-функции Дирихле в нечетных точках.
УДК:517.927.25+517.521.15
Поступило в редакцию: 17.06.2021 Исправленный вариант: 22.11.2021 Принята в печать: 29.11.2021