Аннотация:
Известно, что моноидное сплетение полугрупповых многообразий, которые являются атомами решётки полугрупповых многообразий, может иметь как конечную, так и бесконечную решётку подмногообразий. Как правило, если такая решётка конечна, то она имеет не более 11 подмногообразий. Исключение составляет моноидное сплетение многообразия полурешёток и многообразия полугрупп с нулевым умножением. Эта решётка конечна, число элементов в ней пока неизвестно. В предыдущей статье автора показано, что эта решётка имеет не менее 33 элементов. В настоящей статье показано, что рассматриваемая решётка имеет в точности три максимальных подмногообразия. Как первое приложение полученных результатов вычислен базис решёточного объединения многообразия полурешёток и наибольшего многообразия среди подмногообразий рассматриваемой решётки, обладающих хотя бы одним гетеротипным тождеством. Как второе приложение показано, что рассматриваемая решётка подмногообразий имеет не менее 39 элементов.
Ключевые слова:многообразие, полугруппа, решётка, подмногообразие, полурешётка, полугруппа с нулевым умножением.