Аннотация:
Для равномерного расстояния между функциями распределения $\Phi(x)$ стандартной нормальной случайной величины и $F_\lambda(x)$ пуассоновской случайной суммы независимых одинаково распределенных случайных величин $X_1,X_2,\dots$ с конечным третьим абсолютным моментом, где $\lambda>0$ — параметр пуассоновского индекса, доказано неравенство
$$
\sup_{x}|F_\lambda(x)-\Phi(x)|\leqslant 0{,}4532\frac{\mathsf E|X_1-\mathsf E X_1|^3}{(\mathsf D X_1)^{3/2}\sqrt{\lambda}}\,,\quad \lambda>0,
$$
типа оценки Берри–Эссеена, использующее центральные моменты, в отличие от ранее известных аналогичных неравенств, использующих начальные моменты.