Аннотация:
Рассматривается задача оптимального управления, в которой управляемый процесс подчинен нелинейному волновому уравнению. Состояние процесса описывается решением волнового уравнения и его первыми частными производными по независимым переменным. Набор управляющих воздействий включает распределенное и граничные управления. Постановка задачи допускает произвольную комбинацию условий первого, второго и третьего рода на левой и правой границе области определения. Для исходной задачи оптимального управления строятся две эквивалентные ей вспомогательные задачи оптимального управления, отличающиеся друг от друга и от исходной задачи различными способами описания управляемого процесса. Первая эквивалентная задача фиксирует управляемый процесс с помощью гиперболической системы из четырех уравнений первого порядка. Вторая эквивалентная задача для описания управляемого процесса использует одно дифференциальное уравнение второго порядка и два дифференциальных уравнения первого порядка того же вида, что и в первой эквивалентной задаче. Необходимость перехода от исходного волнового уравнения к соответствующим эквивалентным системам требуется как для получения удобного понятия обобщенного решения, так и для построения необходимых условий оптимальности. Доказывается, что, несмотря на различные с формальной точки зрения функции Понтрягина в соответствующих эквивалентных задачах оптимального управления, специфика решений сопряженных задач позволяет установить совпадение значений функций Понтрягина в области независимых переменных для одних и тех же управлений. Данное свойство обосновывает тождественность как вариационного, так и конечномерного принципов максимума, полученных на основе каждой из эквивалентных задач оптимального управления.
Ключевые слова:оптимальное управление, вариационный и конечномерный принцип максимума, волновое уравнение, сопряженная задача.