Устойчивость систем обыкновенных дифференциальных уравнений со случайными начальными данными
Д. Я. Киселевич,
Г. А. Рудых Иркутский государственный университет
Аннотация:
В работе рассматривается нелинейная неавтономная система обыкновенных дифференциальных уравнений (ОДУ) и соответствующее ей уравнение Лиувилля. Начальные данные системы ОДУ случайны и лежат в заданной области с известным начальным законом распределения. Для нелинейной неавтономной системы ОДУ вводится понятие
$\varepsilon$-статистической устойчивости решения, которое позволяет исследовать поведение решения системы ОДУ с недетерменированными начальными данными. Такое исследование проводится с использованием функции плотности вероятности распределения ансамбля изображающих точек системы ОДУ. Понятие
$\varepsilon$-статистической устойчивости решения позволяет оперировать сразу с множеством траекторий движения системы ОДУ, начальные значения которой лежат в заданной области, а также для проверки критерия
$\varepsilon$-статистической устойчивости достаточно одной функции плотности вероятности распределения ансамбля изображающих точек Гиббса системы ОДУ, которая хоть и удовлетворяет уравнению в частных производных, но это уравнение линейное, а кроме того ищется не общее решение, а решение задачи Коши. Для введения понятия
$\varepsilon$-статистической устойчивости решения необходимо, чтобы нелинейная система ОДУ имела решение в целом, т. е. чтобы траектории системы не уходили в бесконечность за конечное время. В общем случае
$\varepsilon$-статистическая устойчивость не эквивалентна асимптотической устойчивости решения по Ляпунову. Однако между этими понятиями имеется тесная связь, позволяющая сформулировать необходимое и достаточное условие
$\varepsilon$-статистической устойчивости решения для линейной автономной системы ОДУ и достаточное условие для линейной неавтономной системы ОДУ (для однородного и неоднородного случаев). В процессе исследования дисперсии нелинейной неавтономной системы ОДУ было получено необходимое и достаточное условие
$\varepsilon$-статистической устойчивости решения системы ОДУ. Все полученные результаты проиллюстрированы на содержательных примерах.
Ключевые слова:
нелинейная система ОДУ, уравнение Лиувилля, ансамбль Гиббса, функция плотности вероятности распределения, статистическая устойчивость решения.
УДК:
517.938