RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Иркутского государственного университета. Серия «Математика» // Архив

Известия Иркутского государственного университета. Серия Математика, 2015, том 14, страницы 3–17 (Mi iigum239)

Эта публикация цитируется в 6 статьях

Верхние оценки сложности функций над конечными полями в некоторых классах кронекеровых форм

А. С. Балюкa, Г. В. Янушковскийb

a Иркутский государственный университет
b Высшая школа экономики

Аннотация: В последнее время возрос интерес к полиномиальным представлениям функций над конечными полями порядка больше двух и кольцами вычетов по составному модулю. Исследование сложности таких представлений сопряжено с определенными трудностями, и даже в довольно простых классах полиномиальных форм найдены только несовпадающие верхние и нижние оценки сложности.
В настоящей работе внимание уделено поляризованным полиномам над конечными полями и их обобщениям: обобщенным и разностным поляризованным полиномам. Полиномы этих классов представляют собой суммы произведений множителей определенного вида. Различие в классах заключается в ограничениях, накладываемых на вид множителей. Каждый полином реализует некоторую $n$-местную функцию над конечным полем. Под сложностью полинома понимается число ненулевых слагаемых в нем. Каждая функция может быть реализована несколькими различными полиномами из одного класса. Под сложностью функции в классе понимается минимально возможная сложность реализующего ее полинома из этого класса.
Ранее были известны верхние оценки сложности произвольной многоместной функции над простым конечным полем порядка больше двух в классах поляризованных и разностных поляризованных полиномов, а также в классе обобщенно поляризованных полиномов.
Представление $n$-местной функции над конечным полем порядка $q$ поляризованным полиномом или его обобщением можно рассматривать как кронекерову форму, в том смысле, что векторное представление функции получается как линейное преобразование вектора коэффициентов полинома, при этом матрица линейного преобразования представляет собой кронекерово произведение $n$ невырожденных матриц ранга $q$. Этот подход позволил усилить верхнюю оценку для случаев поляризованных и разностных поляризованных полиномов и распространить ее на случай произвольного конечного поля нечетного порядка, а верхнюю оценку для случая обобщенно поляризованных полиномов усилить и распространить на случай произвольного конечного поля порядка большего двух.

Ключевые слова: конечное поле, полином, кронекерова форма, сложность.

УДК: 519.715



© МИАН, 2024