Аннотация:
Теория линейных разностных уравнений применяется в различных областях математики и в одномерном случае имеет вполне завершенный вид. Для $n>1$ ситуация значительно сложнее и даже для постоянных коэффициентов общего описания пространства решений разностного уравнения нет.
В комбинаторном анализе разностные уравнения в сочетании с методом производящих функций дают мощный аппарат исследования перечислительных задач. Другой источник появления разностных уравнений — дискретизация дифференциальных уравнений. Так, дискретизация уравнения Коши–Римана привела к созданию теории дискретных аналитических функций, которая нашла применение в теории римановых поверхностей и комбинаторном анализе. Методы дискретизации дифференциальной задачи являются важной составной частью теории разностных схем и также приводят к разностным уравнениям. Вопрос о существовании и единственности решения относится к числу основных в теории разностных схем.
Другим важнейшим вопросом является вопрос об устойчивости разностного уравнения. Для $n=1$ и постоянных коэффициентов устойчивость исследуется в рамках теории дискретных динамических систем и полностью определяется корнями характеристического многочлена, а именно: все они лежат в единичном круге.
В данной работе приведены два просто проверяемых достаточных условия на коэффициенты разностного оператора, обеспечивающие корректность задачи Коши.
Ключевые слова:полиномиальный разностный оператор, задача Коши, корректность.