Аннотация:
Классическая лемма Донга в теории вертексных алгебр утверждает, что свойство локальности формальных распределений с коэффициентами из алгебры Ли сохраняется под действием вертексного оператора. Аналогичное утверждение известно для ассоциативных алгебр. Изучаются формальные распределения над прелиевыми (правосимметрическими) и преассоциативными (дендриформными) алгебрами, а также над алгебрами Новикова и показывается, что аналог леммы Донга верен для алгебр Новикова, но не выполняется для прелиевых и преассоциативных алгебр.
Ключевые слова:
конформная алгебра, функция локальности, прелиева алгебра, алгебра Новикова.