Аннотация:
В статье для линейного интегро-дифференциального операторного уравнения с вырожденной дифференциальной частью высокого порядка и интегральным членом Вольтерра типа свертки рассмотрена задача Коши. Построена фундаментальная оператор-функция интегро-дифференциального оператора, соответствующего рассматриваемому уравнению, доказаны теоремы существования и единственности обобщенного (в классе распределений с ограниченным слева носителем) и классического ($N$ раз сильно непрерывно дифференцируемого) решений задачи Коши. Полученные результаты применены к исследованию начально-краевых задач, возникающих в математической теории упругости.