Аннотация:
Доказана абсолютная непрерывность спектра двумерного обобщенного периодического оператора Шредингера с непрерывной метрикой $g$ и скалярным потенциалом $V$, если коэффициенты Фурье функций $g^{\pm 1/2}$ удовлетворяют условию $\sum |N|^{1/2}|(g^{\pm 1/2})_N|<+\infty $ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-\Delta $ в смысле квадратичных форм.