Аннотация:
В статье рассматривается задача оптимального управления на бесконечном горизонте, функционал качества которой содержит подынтегральную функцию и дисконтирующий множитель. Особенностью постановки изучаемой задачи является предположение о возможной неограниченности подынтегральной функции. Задача сводится к эквивалентной задаче оптимального управления со стационарной функцией цены как обобщенного (минимаксного, вязкостного) решения уравнения Гамильтона–Якоби, удовлетворяющего условию Гёльдера и условию подлинейного роста. Описывается метод численного приближения обобщенного решения уравнения Гамильтона–Якоби — попятная процедура на бесконечном горизонте. Основным результатом статьи является оценка точности аппроксимации попятной процедурой решения исходной задачи. Задачи исследуемого типа встречаются при моделировании процессов экономического роста и в задачах стабилизации динамических систем. Полученные результаты могут быть использованы при построении численных конечно-разностных схем вычисления функции цены задач оптимального управления или дифференциальных игр.
Ключевые слова:оптимальное управление, обобщенные решения уравнений Гамильтона–Якоби, функция цены, аппроксимационные схемы, попятные процедуры.